Orchestral Accompaniment for a Reproducing Piano

نویسندگان

  • Christopher Raphael
  • Yupeng Gu
چکیده

A system that generates flexible orchestral accompaniment of a computer-enabled piano is presented and demonstrated. We introduce a probabilistic model for the piano data that can be used for on-line and off-line estimation of the piano performance. The model is automatically trainable to the specific performer and piece under consideration. The on-line position estimates form the observable data for a trainable prediction engine that anticipates the future evolution of the performance. These ongoing predictions drive a phase-vocoded audio performance of the orchestra. We present results on a highly challenging gem from the Romantic piano concerto repertoire.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstration of 'Music Plus One'--- a System for Orchestral Musical Accompanimen

Past work on musical accompaniment systems [1], [2], [5], [3], [4], [6], [7], has focused mostly on generating MIDI or other sparsely-parameterized accompaniments for live musicians. MIDI is is particularly well-suited to piano and percussion music since, in these cases, the MIDI representation captures much of the interpretative quality of the performance. Most other acoustic instruments are c...

متن کامل

A Database Linking Piano and Orchestral MIDI Scores with Application to Automatic Projective Orchestration

This article introduces the Projective Orchestral Database (POD), a collection of MIDI scores composed of pairs linking piano scores to their corresponding orchestrations. To the best of our knowledge, this is the first database of its kind, which performs piano or orchestral prediction, but more importantly which tries to learn the correlations between piano and orchestral scores. Hence, we al...

متن کامل

Demonstration of Music Plus One - A Real-Time System for Automatic Orchestral Accompaniment

We demonstrate a system that creates a real-time accompaniment for a live musician performing a nonimprovisatory piece of music. The system listens to the live player by performing a hidden Markov model analysis of the player’s acoustic signal. A belief network uses this information, a musical score, and past rehearsals, to create a sequence of evolving predictions for future note-onsets in the...

متن کامل

Multiple-f0 Estimation and Note Tracking for Mirex 2012 Using a Shift-invariant Latent Variable Model

This submission for MIREX 2012 utilizes a shift-invariant latent variable model for multiple-F0 estimation and note tracking. It extends the shift-invariant probabilistic latent component analysis (SI-PLCA) method and employs several note templates from multiple orchestral instruments. By incorporating shift-invariance into the model along with the constant-Q transform as a time-frequency repre...

متن کامل

Multiple-f0 Estimation and Note Tracking Using a Convolutive Probabilistic Model

This MIREX submission exploits a convolutive probabilistic model for multiple-F0 estimation and note tracking. It extends the shift-invariant Probabilistic Latent Component Analysis method and employs several note templates from multiple orchestral instruments. By incorporating shiftinvariance into the model along with the constant-Q transform as a time-frequency representation, tuning changes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009